
CSE 202 Final Exam Matthias Springer, A99500782 1

Problem 1: Maximizing the benefit of unreachable nodes

Basic Idea

• Build a network flow graph G′ and calculate the minimum cut.

– Take the original graph.

– Connect every vertex v ∈ V to the sink using a capacity of bv. Adding such an edge to the cut
means not to disconnect v and not to get the benefit v.

• Cut all edges that are in the minimal cut and part of the original graph.

Intuition

• We want to maximize the benefits of all disconnected vertices minus the cost for cutting the edges.

• Let A,B a partitioning of V , such that r ∈ V .

• maximize
∑

b∈B vb − cap(A,B)⇔ minimize cap(A,B)−
∑

b∈B vb ⇔ minimize cap(A,B) +
∑

a∈A va

• Restate the problem: minimize the costs for cutting edges plus the benefits that we do not get.

Network Flow Construction

• Start with the original graph G = (V,E).

• Let the special vertex r be the source r = s and add an additional sink vertex t.

• For every vertex v ∈ V − {s, t}, add an edge (v, t) called ev with capacity vb.

• Call the new graph G′ = (V ′, E ′).

CSE 202 Final Exam Matthias Springer, A99500782 2

Algorithm 1 Partitioning/cutting V in A and B, such that
∑

b∈B vb − capacity(A,B) is maximized in G

Require: Graph G = (V,E)
1: function MaxBenefit(G)
2: G′ ← build flow graph out of G
3: A,B ← calculate minimum cut in G′

4: return all cut edges e with e ∈ E
5: end function

Full Algorithm

In this algorithm, we can calculate the minimum cut by running the Ford-Fulkerson algorithm or the Edmonds-
Karp algorithm and determining which vertices are reachable from the source. These vertices form the set A.
The cut edges are all edges e = (u, v) ∈ E with u ∈ A and v 6∈ A.

Proof

We prove that the set of edges that are output by the algorithm, maximizes the profit if all these edges are
removed.

• Termination: We assume that all bv and ce are rational numbers. Then, the Ford-Fulkerson algorithm
is guaranteed to terminate.

• Reformulate the problem: We reformulate the original problem several times until we reach the min-cut
formulation and show that the new formulation is equivalent to the previous one (if not trivial).

– Original problem: Find a subset of edges S ⊆ E, such that
∑

b∈B vb−
∑

e∈S ce is maximized, where
B is the set of vertices that is no longer reachable from r.

– Find S ⊆ E, such that
∑

e∈S ce −
∑

b∈B vb is minimized.

– Find S ⊆ E, such that
∑

e∈S ce +
∑

a∈V−B va is minimized. B and V −B are complementary sets,
i.e. maximizing

∑
b∈B vb is the same as minimizing

∑
a∈V−B va.

– Find a partitioning of V in B and V − B = A, such that
∑

e=(u,v)∈E:u∈A∧v∈B ce +
∑

a∈A va is
minimized. V − B = A is the set of vertices that is reachable from r. The choice of A and B
determines the choice of edges S (and vice-versa), i.e. the mapping from A/B to S is bijective.
Given a set S or A/B, we can also reconstruct the other set A/B or S. Therefore, it does not
matter whether we select S or A/B.

– Model vertices as edges: Generate flow network graph G′. Find the minimum cut. In the min-cut
of G′, there must be no connection from s to t. For every v ∈ V in G, we either have to cut
ev = (v, t) with capacity bv in G′ or cut edges, such that v ∈ B. If v ∈ A, we have to pay the cost
for cutting ev. Therefore, this problem is equivalent to the previous one.

Runtime Complexity

• Building the flow network: we generate O(|V |) vertices and O(|E|+ |V |) edges, where |V | is the number
of vertices in G and |E| is the number of edges in G.

• Calculating the max-flow with the Edmonds-Karp algorithm: O(|V ′||E ′|2) = O(|V ′|5) (worst case: fully
connected graph, i.e. |E ′| = O(|V ′|2). In terms of G, calculating the max-flow takes O(|V |5) time.

• Retrieving the min-cut/partitioning: run DFS from r in O(|V ′|+ |E ′|) = O(2|V |+ |E|) = O(|V |+ |E|).

• Overall runtime complexity: O(|V |5).

CSE 202 Final Exam Matthias Springer, A99500782 3

Problem 4: Approximating the independent set

LP relaxation

• Maximize
∑

v∈V xv

• subject to

– ∀e = (u, v) ∈ E : xu + xv ≤ 1

– ∀v ∈ V : xv ≥ 0

Polynomial time algorithm

In this section, we give a polynomial time algorithm that either finds an independent set of at least |V |
3

in G

or certifies that no independent set of size greater or equal to 2|V |
3

exists.

Basic Idea

• We describe a 2-approximation algorithm of the minimal vertex cover problem using linear programming
and constraint the vertex cover to be at most of size |V |

3
in the relaxed problem.

• If the LP is feasible, we round the values. We will end up with a vertex cover of size ≤ 2|V |
3

, resulting

in an independent set of size ≥ |V |
3

.

• If the LP is infeasible, we can show that no independent set of size ≥ 2|V |
3

exists.

LP relaxation and 2-approximation for Vertex Cover

The minimal vertex cover problem can be written as a relaxed linear program as follows.

• Minimize
∑

v∈V xv

• subject to

– ∀e = (u, v) ∈ E : xu + xv ≥ 1

– ∀v ∈ V : xv ≥ 0

We can approximate the minimal vertex cover with a factor of 2 as follows.

• For every v ∈ V , set xv to 1 if xv ≥ 0.5 (round up) and set xv to 0 if xv < 0.5 (round down).

• TLP = {v | v ∈ V : xv = 1} is a vertex cover, because, for every edge e = (u, v) ∈ E, at least one of
value of xu and xv will be 1. Because of the first constraint in the linear program, xvu and xv can never
be both smaller than 0.5 in the relaxed version. Therefore, at least one of them is rounded to 1 and,
therefore, every edge is covered.

• TLP is a 2-approximation. The objective function value of the relaxed LP is a lower bound for the size
of the minimal vertex cover1. In the worst case, all xv = 0.5 in the relaxed version. Therefore, we round
all xv to 1, resulting in an upper bound of |V | for the approximation. Therefore, the approximation

factor is |V |
0.5|V | = 2.

1If there was a smaller vertex cover, then the linear program would have found it (or an even smaller solution with fractions).

CSE 202 Final Exam Matthias Springer, A99500782 4

Duality of Vertex Cover and Independent Set2

Let G = (V,E) be a graph. Then S is an independent set if and only if V − S is a vertex cover. Let
e = (u, v) ∈ E be an arbitrary edge. u and v cannot be part of S at the same time, so V −S is a vertex cover.
Assume that V −S is a vertex cover and let e = (u, v) ∈ E be an arbitrary edge with u ∈ S and v ∈ S. Then,
neither v ∈ V − S, nor u ∈ V − S, contradicting our assumption that V − S is a vertex cover. Therefore, u
and v cannot be part of S at the same time and S is an independent set.

Full Algorithm

Algorithm 2 Finding an independent set of size at least |V |
3

or stating that no independent set of size at

least 2|V |
3

exists.

Require: Graph G = (V,E)
1: function OneThirdIndependentSet(G)
2: P ← relaxed LP for the minimal vertex cover for G
3: Add constraint

∑
v∈V xv ≤

|V |
3

to P
4: Solve P with the Ellipsoid method
5: if P is infeasible then
6: return No independent set of size > 2|V |

3

7: else
8: return {v | v ∈ V : xv < 0.5 in P}
9: end if

10: end function

Proof

• Let P be the relaxed LP of the minimum vertex cover problem with the constraint that the vertex cover
must be at most of size |V |

3
. Let xv be the decision variable values in its solution.

• Case 1: P is feasible.

– Let x̃v be the rounded values of xv. Let C = {v ∈ V | x̃v = 1}.
– C is a 2-approximation of the minimal vertex cover in G3.

–
∑

v∈V xv ≤
|V |
3
⇒

∑
v∈V x̃v = |C| ≤ 2|V |

3

– Let S = V − C. S is an independent set and |S| ≥ |V | − 2|V |
3

= |V |
3

.

• Case 2: P is infeasible.

– G has no vertex cover of size ≤ |V |
3

. Otherwise, the LP would have found an assignment of xi with
such an objective function value.

– Let C be the minimum vertex cover in G and S be the maximum independent set in G.

– |C| > |V |
3
⇒ |S| ≤ |V | − |C| = 2|V |

3
.

– There is no independent set of size > 2|V |
3

. �

2Proof taken from Kleinberg, Tardos textbook, page 455.
3Proof: see approximation section.

CSE 202 Final Exam Matthias Springer, A99500782 5

Runtime Complexity

• Building the linear program: we create |V | variables, add |V | non-negativity constraints and |E| edge
constraints. Therefore, the size of the linear program is polynomial in the size of G.

• The Ellipsoid method solves the linear program in polynomial time.

• The overall runtime complexity of the algorithm is polynomial in the size of G.

Polynomial time algorithm for graphs of degree 3

Basic Idea

• The idea from the previous subproblem can be generalized: given an φ-approximation algorithm of the
vertex cover, we can came up with an algorithm that

– finds an independent set of size at least α|V | = |V |
1+φ

or

– or certifies that no independent set has size greater than (1− α)|V | = φ|V |
1+φ

• The quality of the vertex cover approximation determines the value α.

Full Algorithm

The following algorithm is a general algorithm that works with any φ-approximation of the minimum vertex
cover problem and yields an α = 1

1+φ
.

Algorithm 3 Finding an independent set of size at least α|V | or stating that no independent set of size at
least (1− α)|V | exists.

Require: Graph G = (V,E)
1: function αIndependentSet(G)
2: β ← 1− α
3: S ← φ-approximation for minimum vertex cover(G)
4: if |S| > β then
5: return No independent set of size > (1− α)|V |
6: else
7: return V − S
8: end if
9: end function

Proof

• The run of the φ-approximation algorithm for the minimum vertex cover on G can have two possible
outcomes. Let S be the φ-approximated minimum vertex cover.

• Case 1: |S| ≤ β|V |

– The approximated minimum vertex cover has size |S| ≤ β|V |.
– There is an independent set of size ≥ (1− β)|V |.

• Case 2: |S| > β|V |

CSE 202 Final Exam Matthias Springer, A99500782 6

– The approximated minimum vertex cover has size > β|V |. Therefore, the real minimum vertex
cover has size > 1

φ
β|V |

– The maximum independent set has size < (1 − β
φ
)|V |. Therefore, there is no independent set of

size ≥ (1− β
φ
)|V |.

• We must set β = (1 − β
φ
4, otherwise, we end up with an interval between these two terms, where we

cannot say whether the independent set exists or not. For a given φ, β = (1 + φ−1)−1 = φ
φ+1

.

• For α = 1 − β, we get relations in terms of the independent set that match the previously mentioned
formulas in the Basic Idea section.

– Find an independent set of size at least α|V | = (1− β)|V | = (1− φ
φ+1

)|V | = |V |
φ+1

or

– certifies that no independent set of has size greater than (1− α)|V | = β|V | = φ
φ+1
|V |

• The quality of the the approximation determines the value of α that we get. For example, for the
2-approximation in the previous subproblem, we get α = 1

φ+1
= 1

3
. By finding a better approximation

of the minimum vertex cover, we can increase α. �

3
2
-approximation for Vertex Cover

• Given an φ-approximation algorithm, we can immediately calculate a value of α and give an algorithm
that finds an independent set of size α|V | or certifies that no independent set has size greater than
(1− α)|V |, according to the previous argument.

• Algorithm: select the vertex with the highest degree, add it to the vertex cover, and remove it.

• For graphs with a maximum degree of 3, this is a 3
2
-approximation.

• In the worst case, the graph consists of cliques of size 4, i.e. every vertex in every clique has 3 connections.
In that case, the minimum vertex cover is 3|V |

4
, because only 3 vertices cover all 6 edges per clique.

• The minimum number of vertices that a vertex cover must cover is |V |
4

. Consider the case, where the
graph consists of disconnected components of 4 vertices, where one vertex is in the middle and the other
3 vertices are connected to only this middle vertex. Insert more Proof here.

• Therefore, according to the previous argumentation and proof, we get an algorithm with α = 1
1+ 3

2

= 2
5
.

4This is equivalent to 1− β = β
φ .

CSE 202 Final Exam Matthias Springer, A99500782 7

Problem 5: Always non-negative path

Basic Idea

• The algorithm is similar to the Bellman-Ford algorithm. Iterate over all edges e = (u, v) ∈ E, |V | times,
and update maxSum[v], i.e. the maximum achievable sum on an always non-negative s-v path.

• ∀e = (u, v) ∈ E: maxSum[v]← max{maxSum[v],maxSum[u] + w(e) if maxSum[u] + w(e) ≥ 0}, where
w(e) is the weight of edge e. Repeat this step |V | times (Bellman-Ford step).

• As we can see in the illustration above, we might have to cycle in positive-weight cycles multiple times,
in order to accumulate a value that is big enough to make up for a long sequence of −1 edges on the
rest of the s-t path.

• We find the first reachable strictly-positive-weighted cycle, i.e. a positive-weight cycle C with ∀vC ∈
C : maxSum[vC] ≥ 0, on an s-t path using DFS (if there is such a cycle) and set all maxSum[vC] =∞5.

• We repeat the Bellman-Ford step, updating the maxSum values and using strictly-positive-weighted
loops arbitrarily often if necessary.

• There is an always non-negative s-t path if and only if maxSum[t] ≥ 0.

Full Algorithm

• The Bellman-Ford step is very similar to the the Bellman-Ford algorithm. Instead of trying to reduce
the path length, we try to find a path weight that is as big as possible. We only use vertices with a
non-negative path length, ensuring that this condition holds for subpaths starting from s.

• The DFS step runs a depth-first search using a stack. We somehow need to store, whether a vertex
was already visited, e.g. by using an array. Once we reach an already visited vertex v, we compare the
sum that we accumulated so far with maxSum[v]. If the accumulated sum is greater, then we found
a strictly-positive-weighted cycle and increase all vertices on that cycle6 to infinity. We do not visit
vertices u with a negative value of maxSum[u], ensuring that we only visit vertices that can be reached
by an always non-negative path.

5It is crucial that all maxSum values are ≥ 0, because we would not be allowed to use the cycle in the first place if it cannot
be reached by any always non-negative path.

6The cycle vertices are all vertices on the stack up to the vertex v, i.e. all vertices on the stack between v and the current
vertex (including these vertices).

CSE 202 Final Exam Matthias Springer, A99500782 8

Algorithm 4 Deciding whether there is an always non-negative s-t path in G.

Require: Graph G = (V,E)
1: function AlwaysNonNegative(G)
2: ∀v ∈ V : maxSum[v]← −∞
3: maxSum[s]← 0
4: BellmanFordStep()
5: DfsStep()
6: BellmanFordStep()
7: return maxSum[t] ≥ 0
8: end function

Algorithm 5 Adapting maxSum for all v ∈ V by propagating all these values using every edge |V | times.

1: function BellmanFordStep()
2: for i← 1 to |V | do
3: for all e = (u, v) ∈ E do
4: if maxSum[u] + w(e) ≥ 0 then
5: maxSum[v]← max{maxSum[v],maxSum[u] + w(e)}
6: end if
7: end for
8: end for
9: end function

Algorithm 6 Setting maxSum[v]←∞ for all v ∈ C for at least the first reachable strictly-positive-weighted
cycle C on every always non-negative s-t path.

1: function DfsStep()
2: S ← new Stack
3: maxSumold ← copy(maxSum)
4: S.push((s, 0))
5: while |S| > 0 do
6: (v,m)← S.peek()
7: mark v as visited
8: for all u ∈ V : (v, u) ∈ E do
9: if maxSumold ≥ 0 then

10: if u was already visited then
11: if u ∈ S ∧m+ w(ev,u) > maxSumold [u] then
12: for all a ∈ V : (a, x) ∈ S ∧ (a, x) is not before (u, y) in S do
13: maxSum[a]←∞
14: end for
15: else
16: S.push(u,m+ w(ev,u))
17: end if
18: end if
19: end if
20: end for
21: S.pop()
22: end while
23: end function

CSE 202 Final Exam Matthias Springer, A99500782 9

Proof

Lemma 1 After the first BellmanFordStep, for all v ∈ V , maxSum[v] is the maximum sum of all
always non-negative s-v paths of length ≤ |V |, if such a path exists, and −∞ otherwise.

We prove this by induction over the number of used edges k, that after k iterations of the outer loop,
maxSum[v] is the maximum sum of all always non-negative s-v paths using at most k edges.

• Induction Base Case: For k = 0, we are not allowed to use any edge. Therefore, maxSum[s] = 0 and
for all other vertices v ∈ V − {s}, maxSum[v] = −∞.

• Induction Hypothesis: Let the statement be true for an arbitrary but fixed k.

• Induction Step: When we update maxSum[v], for some v ∈ V and e = (u, v) ∈ E, we set maxSum =
maxSum+w(e). We only do this if the new value of maxSum[v] is non-negative. maxSum[u] ≥ 0, because
we never set maxSum to a negative value (except for the initialization), and, by induction, maxSum[u]
is the maximum sum of all always non-negative s-u paths using k − 1 edges. In every iteration, we try
to improve paths using all possible edges, and only update maxSum if it becomes greater. Therefore,
at the end of kth iteration, maxSum[v] is the maximum sum of all always non-negative s-v paths using
at most k edges. If maxSum[v] = −∞, it was not updated because v is not reachable from s using an
always non-negative path with at most k edges.

Lemma 2 Let P be an arbitrary s-t path, and C be a strictly-positive-weighted cycle C with P ∩ C 6= ∅,
such that C is the first such cycle for P and for all vc ∈ C, there exists an always non-negative s-vc path
in G. After DfsStep, for all vc ∈ C, maxSum[vc] =∞.

When the DFS visits a vertex, it accumulates the edge sum for the current path starting from s. When it
reaches an already visited vertex v and v is not on the stack anymore, then we found an undirected, but no
directed cycle. If v is still on the stack, then all vertices starting from v to the top of the stack form a cycle
C7. The algorithm takes all these vertices and sets their maxSum values to ∞.

Let us assume that a vertex vc ∈ C is not reachable by an always non-negative s-vc path in G. Then, at
least one vertex u on any s-vc path has maxSum[u] = −∞. Then, the DFS will not visit this vertex and there
is no way to find the cycle, because, either a vertex on the path to the cycle is not visited, or a vertex inside
the cycle is not visited.

Note, that this works only, because maxSum[v] contains the maximum sum of all always non-negative s-v
paths using at most |V | edges. Since C is the first cycle on an s-t path, there is no way to accumulate a high
edge sum in order to reach C with an always non-negative path. Therefore, if a cycle |C| cannot be reached
by an always non-negative path using at most |V | edges (which can involve all vertices), then C cannot be
reached by an always non-negative path at all.

7If there was a vertex u ∈ V among these vertices, that is not part of the cycle, then the DFS would not have been able to
continue the path to v and popped u from the stack.

CSE 202 Final Exam Matthias Springer, A99500782 10

Lemma 3 There is an always non-negative s-t path in G, if and only if

• t can be reached from s via an always non-negative path of length at most |V | or

• there is an always non-negative path of length at most |V | to a strictly-positive-weighted cycle C,
and some vC ∈ C has an arbitrary path to t.

In the first case, the algorithm finds that path in the first BellmanFordStep according to the first
lemma. In the second case, the algorithm find the first strictly-positive-weighted cycle C that insects with P ,
where P is some always non-negative s-t path. The distance C from s cannot be greater than |V |, because,
otherwise, we would have to visit a vertex twice, which results in a cycle, contradicting our assumption that C
is the first such cycle. After we reached the cycle C, we can loop in it as often as we want to and accumulate
an arbitrary high maxSum value, therefore maxSum[vC] = ∞. Therefore, t is reachable using an always
non-negative path from vC , regardless of the weights on that path. Using the same argument from the first
lemma, we can prove that by running BellmanFordStep again, we update all maxSum[u] = ∞ for every
vertex u on any vC-t path. Therefore, the algorithm sets maxPath[t] =∞ and outputs the correct answer.

If none of the two cases applies, then there is no simple always non-negative s-t path and there is no way
to increase the sum in loop that leads to t. Therefore, maxSum[t] = −∞ after the first BellmanFordStep
(according to the first lemma), and either DfsStep does not change maxSum values or there is no way from
the loop to t, in which case the second BellmanFordStep cannot propagate the increased values to t. �

Runtime Complexity

• Running BellmanFordStep: |V | iterations for the outer loop and |E| iterations for every inner loop
run, resulting in O(|V ||E|) iterations.

• Running DfsStep: The runtime of DFS is O(|V | + |E|). In the worst case, we update no more than
|V | maxSum values per vertex, resulting in O(|V |2 + (|V |+ |E|).

• Running BellmanFordStep again: O(|V ||E|).

• The overall runtime complexity is O(|V ||E|+ |V |2 + |V |+ |E|+ |V ||E|). In the worst case, |E| = |V |2
(fully connected graph), so the runtime complexity is O(|V |3).

CSE 202 Final Exam Matthias Springer, A99500782 11

Problem 2: Coupon Collector

Basic Idea

• Model the problem as a graph. Every variety i gets a vertex wi = vi with weight pi. Add an edge (vi, vj)
with weight wi,j = min{pj, vi}, indicating that we might get a discount of wi,j if buy variety i before
variety j.

• Intuition: Always buy the variety such that we will loose the smallest discount. After buying variety
i with a coupon for j, subtract wi,j from wj, indicating that j is now cheaper to buy. Update j’s
incoming edges, such that their weight is not bigger than wj (you cannot save more money than the
variety costs)8.

• Buy all varieties with no incoming edges first (we will loose no discount and we have to buy them
anyway), until there are only cycles left (see proof).

• For every cycle C, buy the variety i with vi ∈ C, where wj,i is minimal and (vj, vi) ∈ E (at this time,
there can only be one incoming edge for every vertex), i.e. buy the variety where we loose the least
discount. Buy the rest of the varieties in C by following the edges in the cycle.

Graph Construction

• For every variety i, add a vertex vi with a weight wi = vi.

• If variety i contains a coupon for variety j with discount vi and the regular price of j is pj, add an edge
(vi, vj) with weight wi,j = min{pj, vi}.

8It is sufficient to update all edges at once only a single time after buying all varieties with no incoming edges, leading to
linear runtime.

CSE 202 Final Exam Matthias Springer, A99500782 12

Full Algorithm

Algorithm 7 Coupon Collector Algorithm

1: function CouponCollector()
2: build graph G
3: for all v ∈ V do
4: if v was not yet visited then
5: DfsBuy(v)
6: end if
7: end for
8: ∀e = (u, v) ∈ E : wu,v ← min{wu,v, wv}
9: for all v ∈ V do

10: s← vertex u in v’s cycle such that wx,u is minimal for some x
11: while s.next 6= null do
12: buy(s)
13: s← s.next
14: delete(s)
15: end while
16: end for
17: end function

Algorithm 8 Buy a variety and update the prices and achievable discounts

Require: Vertex v
1: function DfsBuy(v)
2: mark v as visited
3: if deg in(v) = 0 then
4: buy(v)
5: delete(v)
6: end if
7: if v.next was not yet visited then
8: DfsBuy(v.next)
9: end if

10: end function

• Every vertex has exactly one outgoing edge, since every variety contains exactly one coupon. The next
pointer points to the next variety.

• DfsBuy buys all varieties with no incoming edge, i.e. all varieties which we will never get a coupon
for. After buying a variety, we delete its vertex from the graph G and thus also from the vertex set V .

• CouponCollector calls DfsBuy. Afterwards, there will be only disjunct cycles left (see proof). For
every cycle C, we start buying the whole cycle by following the next pointers, starting with the vertex
whose incoming edge has the least value, i.e. the variety for which we will loose the smallest discount.

• Buy buys a variety, removes it from the graph, and updates price values and discount values. After
buying a variety, the price for the variety of the coupon j drops.

CSE 202 Final Exam Matthias Springer, A99500782 13

Algorithm 9 Buy varieties with no other incoming edges

Require: Vertex v
1: function Buy(v)
2: wv.next ← wv.next − wv,v.next
3: buy variety(v)
4: delete(v)
5: end function

Runtime Complexity

• Generating the graph G: we generate exactly n vertices and n edges. This takes O(n) time.

• Running DfsBuy: we call this function for every vertex vi exactly once. Runtime O(n), since the
number of edges is also n.

• Updating all edge weights: there are no more than n edges, so the runtime complexity is O(n).

• Buying the rest of the varieties: with every run of the for-loop, V becomes smaller. We run the for-loop
number of cycles times. Every run of the for-loop eliminates a cycle. Inside a cycle C, we find the
vertex for which we loose the minimum discount by following the next pointer no more than |C| times
(full loop). Then we traverse the C a second time and buy every vertex. The runtime for one cycle is
O(|C|). Since the cycles are disjunct, the runtime for the whole step is O(n).

• Every variety is bought once. The runtime complexity of all Buy steps is O(n)

• The overall runtime complexity of the algorithm is O(n).

Proof

Lemma 4 Varieties with no incoming edges can be bought in any order (DfsStep) and it is an optimal
decision to buy them first. Repeating this step until no such vertices exist, is an optimal decision.

We can never get a discount for varieties with no incoming edges, since there are no coupons for these varieties.
We still have to buy these varieties. Therefore, we can buy these varieties in any order (they are independent
of each other). Furthermore, it is safe to buy this elements first. Consider an optimal buying sequence SOPT

and let i be a variety with no incoming edges. By moving i to any other position, the cost of the sequence
does not change, because we will never get a discount for i.

Let j be a variety that ends up with no incoming cycle edge after the previous buying step. The same
argument holds true, as long as we make sure that we buy j after i, where there used to be an edge (i, j)
before buying and deleting i (the cost of SOPT does not change by buying j at a different time, as long as we
buy it before i). Therefore, by induction, we can prove that recursively buying all varieties with no incoming
edges, until no such variety exists anymore, is an optimal decision.

Lemma 5 If there are no vertices with no incoming edges, G consists of disjunct cycles.

CSE 202 Final Exam Matthias Springer, A99500782 14

Let v ∈ V be an arbitrary vertex. v has exactly one outgoing edge, denoted by v.next. By following the
next pointer we will eventually reach a vertex that we already visited (loop L1), since the number of vertices
is finite. The first already visited vertex that we reach must be the vertex v that we started with.

Let us assume that we reach another vertex u 6= v that we already visited. Then, by traversing G starting
from v using inverted edges, we cannot reach any other already visited vertex (otherwise, we would have
reached v instead of u first). We cannot end up at a vertex with no more incoming edges, by definition of
G. Therefore, since the number of vertices is finite, we will run into another loop L2, where no vertex is an
already visited vertex. Since, every vertex in L2 contains a pointer to the next element in L2, and since at
the same time, we can reach v and thus L1 from L2, there must be a vertex in L2 with two outgoing edges.
This contradicts the fact that every vertex has exactly one outgoing edge.

Lemma 6 Let G be a graph and assume that we already bought all varieties with no incoming edges. Let,
for every variety i, vi be the price for buying i with coupons that we go so far, and for every (vi, vj) ∈ E,
wi,j ≤ wj. Buying the varieties in every cycle in such a way that we loose the least discount is an optimal
decision. Every such sequence is optimal, no matter how the sequences for every cycle are interleaved.

Let C be a cycle. We have to break the cycle at one position, i.e. when we buy the first variety v ∈ C,
we will not get the discount for v. We will get the discount for buying all subsequent varieties in the loop by
following the next pointer. Since we cannot get the discount for at least one variety, maxv∈C

∑
u∈C−{v}wx,u

is an upper bound the total discount that we get, i.e. the optimal decision for C. We get exactly this total
discount for C if we start with buying a variety v with a minimal value of wx,v in G. We get all other discounts
by following the next pointer and buying the rest of the varieties in that sequence. Since, for every (vi, vj) ∈ E,
wi,j ≤ wj, we cannot get money back by using a coupon. Since the values of wj are the prices that take into
account discounts that we got during buying varieties with no incoming edges, this is an optimal decision for
C, having already bought all varieties with no incoming edges (and this was shown to be optimal).

Let D be another cycle such that C and D are disjunct. For D we can make the same argument as
for C. Now consider an optimal buying sequence SOPT . In SOPT , we buy varieties for cycle C and D as
described above, i.e. for C and D, we start the variety for which we loose a minimal discount and then follow
the next pointer (we have shown that this is optimal). C and D are disjunct and, since every vertex has
exactly one outgoing edge, there are no connections between C and D. Therefore, the buying sequence for
C is independent from the buying sequence for D. Therefore, as long as C and D are bought in an optimal
sequence, it is irrelevant how C and D are interleaved. Therefore, for an arbitrary number of cycles, as long
as every cycle is bought in an optimal way, every interleaving of the buying sequences is optimal.

We have shown that buying varieties with no incoming edges is an optimal decision. We have also shown
that buying the rest of the cycles as described in the algorithm, is an optimal decision, if we update the
discount values after the first step in such a way that they reflect the coupons that we got when bought
varieties with no incoming edges. Therefore, the algorithm produces an optimal solution. �

CSE 202 Final Exam Matthias Springer, A99500782 15

Problem 6: Frequent Elements

Basic Idea

• Maintain two counter variables c1, c2, for the two most frequent elements at the moment.

• Read element by element: when element x is read, increase x’s counter. If x there is no counter for x,
decrease both counters by min{c1, c2} and make the variable with value 0 the new counter variable for
x (and then increase x’s counter).

• When all variables were read, iterate once over the whole array once again to make sure that the last
most frequent elements actually apprear more than n

3
times.

Full Algorithm

See pseudo code listing on next page.

Runtime Complexity

We calculate the runtime complexity in terms of comparisons of elements.

• In the first for-loop, we compare every element no more than twice (with e1 and e2), resulting in 2n
comparisons.

• In the second for-loop, we do the same kind of comparison again, resulting in 2n comparisons.

• In total, we have 4n = O(n) comparisons.

Proof

We prove that, after reading all elements once, only the elements e1 and e2 may appear more than n
3

times.

• Let L be the list of elements.

• c1/c2 is the number of occurrences of e1/e2, since the time when e1/e2 replaced another number.

• Assume that there is another element e 6= e1 and e 6= e2 and e appears more than n
3

times. Let us think
about why e 6= e1 and e 6= e2.

– e 6∈ L, therefore e did never replace e1 or e2. Then, e does not appear more than n
3

times, which
is a contradiction to our assumption.

– e ∈ L, but it did never replace an element e1 or e2. e can only replace another element, if another
element’s counter drops to 0 and we read e. If this situation never happened, then some other
elements that used to be in e1 or e2 did both appear more often than e. Therefore, e cannot appear
more than n

3
times in L. Otherwise, there would be more than 2n

3
other elements, resulting in more

than n elements in total, but the list is only of size n.

– e ∈ L and e = e1 or e = e2 at some point, but it was replaced by another element g. We prove that,
if ne is the number of occurrences of e, there are at least 2ne other elements. Assume, without loss
of generality, that e = e1.

∗ If c1 = c2, then we need ne elements to reduce e’s counter to zero and we know that there are
c2 = ne occurrences of another element e2. Therefore, there are at least 2ne other elements.

CSE 202 Final Exam Matthias Springer, A99500782 16

Algorithm 10 Find all elements with that occur more than n
3

times

Require: List L
1: function FrequentElements(L)
2: if |L| ≤ 2 then
3: return L
4: end if
5: e1 ← null
6: e2 ← null
7: c1 ← 0
8: c2 ← 0
9: for all e ∈ L do

10: if e1 = e then
11: c1 ← c1 + 1
12: else if e2 = e then
13: c2 ← c2 + 1
14: else if c1 = 0 then
15: e1 ← e
16: c1 ← 1
17: else if c2 = 0 then
18: e2 ← e
19: c2 ← 1
20: else
21: c1 ← c1 − 1
22: c2 ← c2 − 1
23: end if
24: end for
25: c1 ← 0
26: c2 ← 0
27: for all e ∈ L do
28: if e1 = e then
29: c1 ← c1 + 1
30: else if e2 = e then
31: c2 ← c2 + 1
32: end if
33: end for
34: return {ei | ci > n

3
}

35: end function

CSE 202 Final Exam Matthias Springer, A99500782 17

∗ If c2 < c1, then, at some point, we reduce e2’s counter to zero first. After this happened, we
can read another symbol without having the counters reduced by one (since c2 = 0). If we
repeat this step with h different elements, we only reduce the counter ne by h

2
. Therefore,

there are c2 occurrences of e2, we need c2 occurrences of another symbol to reduce c2 to 0, and
then we have to read 2(ne − c2) symbols, in order to reduce e’s counter (ne = c1) to zero9.
Therefore, there are 2(ne − c2) + c2 + c2 = 2ne occurrences of other symbols.

∗ If c1 < c2, then there is a symbol e2 that appears more often than e, i.e. more than ne times,
and there at least ne other symbols that cause c1 to drop to zero. Therefore, there are more
than 2ne other symbols in L.

∗ In all three cases, there are 2ne occurrences of other symbols. If e occurred more than n
3

times,
then we have more than 2n

3
other symbols. Therefore, we would have more than n elements in

total, which is a contradiction to the fact that the list has size n. Therefore, by contradiction,
e cannot appear more than n

3
times in L

• We proved that no other element than e 6= e1, e 6= e2 can appear more than 3
n

times in L. Therefore,
if an element e appears more than n

3
times, then either e1 = e or e2 = e. Therefore, after counting the

occurrences of e1 and e2 in a second run, we can be sure that we found all elements that appear more
than n

3
times in L. �

Space Complexity

• We need four variables c1, c2, e1, e2, resulting in constant space.

• If we also account for the input array n, we need O(n) space.

9This works by reading a symbol a and putting it in e2, reading another symbol b and reducing both c1 and c2 at once,
multiple times. If we read the same symbol again, i.e. a = b, then we again increase the counter of c2 and we have to read one
more other symbol to reduce any one of the two counters.

CSE 202 Final Exam Matthias Springer, A99500782 18

Problem 3: Scheduling

Example

For the following list of jobs, the heuristic generates a non-optimal solution.

• Jobs lengths: {15, 14, 13, 11, 10}.

• Assignment: M1 = {151, 114, 105},M2 = {142, 133}10, overall time requirement: 36.

• Optimal assignment: M1 = {15, 14},M2 = {10, 11, 13}, overall time requirement: 34.

Basic Idea

• We find a lower bound for the optimal solution and an upper bound for the approximation algorithm,
in order to determine the approximation factor.

• The key idea is to take a look at the machine with the highest load and at the last job that was added
to that machine.

Proof

• Let G be greedy algorithm, M1 be the first machine, M2 be the second machine, l(Mi) be the load of
machine i, and ti be the load of the ith job, where the jobs are sorted decreasingly by their load.

• Let, without loss of generality, M1 be the machine with the higher load after running G.

• Let us assume that n > 2. Otherwise, we would give every machine at most one job which is optimal.

• TOPT ≥ 2t3, one machine must get at least 2 jobs and in the best case, these two jobs have equal load.
We also know that TOPT ≥ max1≤i≤n ti, because one of the two machines has to get the largest job. We
also know that TOPT ≥ 1

2

∑n
i=1 ti, for the case that all jobs are equally distributed.

• Let us assume that M1 gets at least 2 jobs. Otherwise, there is one big job that is greater than all other
jobs (on M2). In that case, the schedule of G is optimal.

• Let tj be the last job that was assigned to M1. We know that j > 2, because the first to jobs go to
machines M1 and M2. Therefore, tj ≤ t3 ≤ TOPT

2
.

• 2(l(M1)−tj) ≤
∑n

i=1 ti, because M1 had a lower load than M2 when assigning tj. Therefore, l(M1)−tj ≤
1
2

∑n
i=1 ti = TOPT .

• Therefore, l(M1) ≤ TOPT + tj ≤ 3
2
TOPT , because tj ≤ 1

2
TOPT (and l(M1) biggest load of a processor

after running G). This results in an approximation factor of 3
2
.

10The subscript indicates the time of assignment.

